Probabilistic (Bayesian) modeling of gene expression in transplant glomerulopathy.

نویسندگان

  • Eric A Elster
  • Jason S Hawksworth
  • Orlena Cheng
  • David B Leeser
  • Michael Ring
  • Douglas K Tadaki
  • David E Kleiner
  • John S Eberhardt
  • Trevor S Brown
  • Roslyn B Mannon
چکیده

Transplant glomerulopathy (TG) is associated with rapid decline in glomerular filtration rate and poor outcome. We used low-density arrays with a novel probabilistic analysis to characterize relationships between gene transcripts and the development of TG in allograft recipients. Retrospective review identified TG in 10.8% of 963 core biopsies from 166 patients; patients with stable function were studied for comparison. The biopsies were analyzed for expression of 87 genes related to immune function and fibrosis by using real-time PCR, and a Bayesian model was generated and validated to predict histopathology based on gene expression. A total of 57 individual genes were increased in TG compared with stable function biopsies (P < 0.05). The Bayesian analysis identified critical relationships between ICAM-1, IL-10, CCL3, CD86, VCAM-1, MMP-9, MMP-7, and LAMC2 and allograft pathology. Moreover, Bayesian models predicted TG when derived from either immune function (area under the curve [95% confidence interval] of 0.875 [0.675 to 0.999], P = 0.004) or fibrosis (area under the curve [95% confidence interval] of 0.859 [0.754 to 0.963], P < 0.001) gene networks. Critical pathways in the Bayesian models were also analyzed by using the Fisher exact test and had P values <0.005. This study demonstrates that evaluating quantitative gene expression profiles with Bayesian modeling can identify significant transcriptional associations that have the potential to support the diagnostic capability of allograft histology. This integrated approach has broad implications in the field of transplant diagnostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Interleukin-17 Gene Expression and Serum Levels in Acute Rejected and non-Rejected Liver Transplant Patients

Background: Interleukin-17 (IL-17), as a potent proinflammatory cytokine, has a critical role in post liver transplant outcomes. However, there is not much information about the effects of IL-17 cytokine on acute liver rejection. Objective: To evaluate the role of IL-17 in post-liver transplant acute rejection. Methods: Ninety seven adult liver transplant patients who enrolled in this cross sec...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of molecular diagnostics : JMD

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2010